1,238 research outputs found

    Molecular structures and vibrations of neutral and anionic CuOx (x = 1-3,6) clusters

    Full text link
    We report equilibrium geometric structures of CuO2, CuO3, CuO6, and CuO clusters obtained by an all-electron linear combination of atomic orbitals scheme within the density-functional theory with generalized gradient approximation to describe the exchange-correlation effects. The vibrational stability of all clusters is examined on the basis of the vibrational frequencies. A structure with Cs symmetry is found to be the lowest-energy structure for CuO2, while a -shaped structure with C2v symmetry is the most stable structure for CuO3. For the larger CuO6 and CuO clusters, several competitive structures exist with structures containing ozonide units being higher in energy than those with O2 units. The infrared and Raman spectra are calculated for the stable optimal geometries. ~Comment: Uses Revtex4, (Better quality figures can be obtained from authors

    Two-body correlations and the superfluid fraction for nonuniform systems

    Full text link
    We extend the one-body phase function upper bound on the superfluid fraction in a periodic solid (a spatially ordered supersolid) to include two-body phase correlations. The one-body current density is no longer proportional to the gradient of the one-body phase times the one-body density, but rather it depends also on two-body correlation functions. The equations that simultaneously determine the one-body and two-body phase functions require a knowledge of one-, two-, and three-body correlation functions. The approach can also be extended to disordered solids. Fluids, with two-body densities and two-body phase functions that are translationally invariant, cannot take advantage of this additional degree of freedom to lower their energy.Comment: 13 page

    A comparison of baleen whale density estimates derived from overlapping satellite imagery and a shipborne survey

    Get PDF
    As whales recover from commercial exploitation, they are increasing in abundance in habitats that they have been absent from for decades. However, studying the recovery and habitat use patterns of whales, particularly in remote and inaccessible regions, frequently poses logistical and economic challenges. Here we trial a new approach for measuring whale density in a remote area, using Very-High-Resolution WorldView-3 satellite imagery. This approach has capacity to provide sightings data to complement and assist traditional sightings surveys. We compare at-sea whale density estimates to estimates derived from satellite imagery collected at a similar time, and use suction-cup archival logger data to make an adjustment for surface availability. We demonstrate that satellite imagery can provide useful data on whale occurrence and density. Densities, when unadjusted for surface availability are shown to be considerably lower than those estimated by the ship survey. However, adjusted for surface availability and weather conditions (0.13 whales per km2, CV = 0.38), they fall within an order of magnitude of those derived by traditional line-transect estimates (0.33 whales per km2, CV = 0.09). Satellite surveys represent an exciting development for high-resolution image-based cetacean observation at sea, particularly in inaccessible regions, presenting opportunities for ongoing and future research

    Lines, Circles, Planes and Spheres

    Full text link
    Let SS be a set of nn points in R3\mathbb{R}^3, no three collinear and not all coplanar. If at most nkn-k are coplanar and nn is sufficiently large, the total number of planes determined is at least 1+k(nk2)(k2)(nk2)1 + k \binom{n-k}{2}-\binom{k}{2}(\frac{n-k}{2}). For similar conditions and sufficiently large nn, (inspired by the work of P. D. T. A. Elliott in \cite{Ell67}) we also show that the number of spheres determined by nn points is at least 1+(n13)t3orchard(n1)1+\binom{n-1}{3}-t_3^{orchard}(n-1), and this bound is best possible under its hypothesis. (By t3orchard(n)t_3^{orchard}(n), we are denoting the maximum number of three-point lines attainable by a configuration of nn points, no four collinear, in the plane, i.e., the classic Orchard Problem.) New lower bounds are also given for both lines and circles.Comment: 37 page

    Parton energy loss at strong coupling and the universal bound

    Full text link
    The apparent universality of jet quenching observed in heavy ion collisions at RHIC for light and heavy quarks, as well as for quarks and gluons, is very puzzling and calls for a theoretical explanation. Recently it has been proposed that the synchrotron--like radiation at strong coupling gives rise to a universal bound on the energy of a parton escaping from the medium. Since this bound appears quite low, almost all of the observed particles at high transverse momentum have to originate from the surface of the hot fireball. Here I make a first attempt of checking this scenario against the RHIC data and formulate a "Universal Bound Model" of jet quenching that can be further tested at RHIC and LHC.Comment: 8 pages, 2 figures, invited plenary talk given at "Hard Probes 2008" Conference, 8-14 June 2008, Illa da Toxa, Galicia, Spai

    Recent developments in the characterization of superconducting films by microwaves

    Full text link
    We describe and analyze selected surface impedance data recently obtained by different groups on cuprate, ruthenate and diboride superconducting films on metallic and dielectric substrates for fundamental studies and microwave applications. The discussion includes a first review of microwave data on MgB2, the weak-link behaviour of RABiTS-type YBa2Cu3O7-d tapes, and the observation of a strong anomalous power-dependence of the microwave losses in MgO at low temperatures. We demonstrate how microwave measurements can be used to investigate electronic, magnetic, and dielectric dissipation and relaxation in the films and substrates. The impact of such studies reaches from the extraction of microscopic information to the engineering of materials and further on to applications in power systems and communication technology.Comment: Invited contribution to EUCAS2001, accepted for publication in Physica C in its present for

    Two-photon final states in peripheral heavy ion collisions

    Get PDF
    We discuss processes leading to two photon final states in peripheral heavy ion collisions at RHIC. Due to the large photon luminosity we show that the continuum subprocess γγγγ\gamma \gamma \to \gamma \gamma can be observed with a large number of events. We study this reaction when it is intermediated by a resonance made of quarks or gluons and discuss its interplay with the continuum process, verifying that in several cases the resonant process ovewhelms the continuum one. It is also investigated the possibility of observing a scalar resonance (the σ\sigma meson) in this process. Assuming for the σ\sigma the mass and total decay width values recently reported by the E791 Collaboration we show that RHIC may detect this particle in its two photon decay mode if its partial photonic decay width is of the order of the ones discussed in the literature.Comment: 10 pages, 8 figure

    Coping with the effects of fear of failure in young elite athletes

    Get PDF
    Coping with stress is an important element in effective functioning at the elite level in sports, and fear of failure (FF) is an example of a stressor that athletes experience. Three issues underpin the present preliminary study. First, the prevalence of problems attributed to FF in achievement settings. Second, sport is a popular and significant achievement domain for children and adolescents. Third, there is a lack of research on FF in sport among this population. Therefore, the objectives of the study were to examine the effects of FF on young athletes and to find out their coping responses to the effects of FF. Interviews were conducted individually with nine young elite ath­letes (5 males, 4 females; ages 14-17 years). It was inferred from the data that FF affected the athletes' well-being, interpersonal behavior, sport performance, and schoolwork. The athletes employed a combination of problem-focused, emotion-fo­cused, and avoidance-focused coping strategies, with avoidance strategies being the most frequently reported

    Liquid 4He: contributions to first principles theory of quantized vortices, thermohydrodynamic properties, and the lambda transition

    Full text link
    Liquid 4He has been studied extensively for almost a century, but there are still a number of outstanding weak or missing links in our comprehension of it. This paper reviews some of the principal paths taken in previous research and then proceeds to fill gaps and create an integrated picture with more complete understanding through first principles treatment of a realistic model that starts with a microscopic, atomistic description of the liquid. Newly derived results for vortex cores and thermohydrodynamic properties for a two-fluid model are used to show that interacting quantized vortices may produce a lambda anomaly in specific heat near the superfluid transition where flow properties change. The nature of the order in the superfluid state is explained. Experimental support for new calculations is exhibited, and a unique specific heat experiment is proposed to test predictions of the theory. Relevance of the theory to modern research in cosmology, astrophysics, and Bose-Einstein condensates is discussed.Comment: 155 pages, 28 figure
    corecore